Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Rifabutin-loaded Floating Gellan Gum Beads: Effect of Calcium and Polymer Concentration on Incorporation Efficiency and Drug Release

Anurag Verma1 , Jayant K Pandit2

1Department of Pharmaceutics, College of Pharmacy, IFTM, Moradabad, 244001; 2Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi, India.

For correspondence:-  Anurag Verma   Email: anuragvermakuntam@rediffmail.com   Tel:+919412581046

Received: 18 August 2010        Accepted: 16 December 2010        Published: 14 February 2011

Citation: Verma A, Pandit JK. Rifabutin-loaded Floating Gellan Gum Beads: Effect of Calcium and Polymer Concentration on Incorporation Efficiency and Drug Release. Trop J Pharm Res 2011; 10(1):61-67 doi: 10.4314/tjpr.v10i1.10

© 2011 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To formulate rifabutin-loaded floating gel beads for stomach-specific release.
Methods: Rifabutin-loaded floating gellan gum beads were prepared by ionotropic calcium-induced gelation in acidic medium. In-vitro buoyancy and drug release studies were performed using a USP dissolution apparatus type II in 0.01M HCl (ph 2.0) as the dissolution medium. The shape, surface morphology and internal structure of the dried beads were examined by scanning electron microscopy. Fourier Transform infrared spectroscopy (FTIR) was applied to investigate drug-polymer interactions.
Results: The beads exhibited excellent buoyancy in simulated gastric fluid (SGF) and remained buoyant for 18 h. Drug incorporation efficiency of the beads ranged from 40 to 60 % and was dependent significantly (p < 0.05) on the concentrations of calcium ions and gellan gum. Drug release from the floating bead formulations was rapid, with > 50 % of the drug released within 1 h. Increased polymer concentration did not significantly (p < 0.05) retard drug release.
Conclusion: Incorporation efficiency and release of rifabutin can be controlled by modulation of the investigated parameters. The developed floating gellan gum beads may be suitable for a potential oral stomach-specific release system to treat stomach infections such as multi-drug resistant Helicobacter pylori infection.

Keywords: Antipyretic activity, Baker’s yeast, Bombax malabaricum, Phytochemical screening

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates